Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
نویسندگان
چکیده
OBJECTIVE Computational fluid dynamics (CFD) simulations of intracranial aneurysm hemodynamics usually adopt the simplification of the Newtonian blood rheology model. A study was undertaken to examine whether such a model affects the predicted hemodynamics in realistic intracranial aneurysm geometries. METHODS Pulsatile CFD simulations were carried out using the Newtonian viscosity model and two non-Newtonian models (Casson and Herschel-Bulkley) in three typical internal carotid artery saccular aneurysms (A, sidewall, oblong-shaped with a daughter sac; B, sidewall, quasi-spherical; C, near-spherical bifurcation). For each aneurysm model the surface distributions of shear rate, blood viscosity and wall shear stress (WSS) predicted by the three rheology models were compared. RESULTS All three rheology models produced similar intra-aneurysmal flow patterns: aneurysm A had a slowly recirculating secondary vortex near the dome whereas aneurysms B and C contained only a large single vortex. All models predicted similar shear rate, blood viscosity and WSS in parent vessels of all aneurysms and in the sacs of B and C. However, large discrepancies in shear rate, viscosity and WSS among predictions by the various rheology models were found in the dome area of A where the flow was relatively stagnant. Here the Newtonian model predicted higher shear rate and WSS values and lower blood viscosity than the two non-Newtonian models. CONCLUSIONS The Newtonian fluid assumption can underestimate viscosity and overestimate shear rate and WSS in regions of stasis or slowly recirculating secondary vortices, typically found at the dome in elongated or complex-shaped saccular aneurysms as well as in aneurysms following endovascular treatment. Because low shear rates and low WSS in such flow conditions indicate a high propensity for thrombus formation and rupture, CFD based on the Newtonian assumption may underestimate the propensity of these events.
منابع مشابه
A patient-specific study of blood flow in a cerebral aneurysm using medical images
Background: Cerebral aneurysm disease causes intracranial hemorrhage by rupturing, which can eventually, lead to organ failure or death. For this reason, it is important to anticipate the reasons for rupturing of a cerebral aneurysm from biomechanical point of view. Investigating this disease may even help the physicians to find treatments and predict the patient’s situation. This research was ...
متن کاملHigh WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis.
SUMMARY Increasing detection of unruptured intracranial aneurysms, catastrophic outcomes from subarachnoid hemorrhage, and risks and cost of treatment necessitate defining objective predictive parameters of aneurysm rupture risk. Image-based computational fluid dynamics models have suggested associations between hemodynamics and intracranial aneurysm rupture, albeit with conflicting findings re...
متن کاملBlood flow dynamics in saccular aneurysm models of the basilar artery.
Blood flow dynamics under physiologically realistic pulsatile conditions plays an important role in the growth, rupture, and surgical treatment of intracranial aneurysms. The temporal and spatial variations of wall pressure and wall shear stress in the aneurysm are hypothesized to be correlated with its continuous expansion and eventual rupture. In addition, the assessment of the velocity field...
متن کاملIntracranial aneurysms: flow analysis of their origin and progression.
PURPOSE To explain the origin and growth of intracranial aneurysms using the hemodynamic data obtained from a computer simulation. MATERIALS AND METHODS Pulsatile flow in an intracranial aneurysm cavity was numerically simulated based on physiologic pulsatile flow observed in the aorta. A finite element method was applied to solve the equations of motion and the non-Newtonian viscosity of blo...
متن کاملWall Mechanical Properties and Hemodynamics of Unruptured Intracranial Aneurysms.
BACKGROUND AND PURPOSE Aneurysm progression and rupture is thought to be governed by progressive degradation and weakening of the wall in response to abnormal hemodynamics. Our goal was to investigate the relationship between the intra-aneurysmal hemodynamic conditions and wall mechanical properties in human aneurysms. MATERIALS AND METHODS A total of 8 unruptured aneurysms were analyzed. Com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurointerventional surgery
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2012